仪器介绍
小动物成像
动物活体成像技术简介及应用
小动物活体成像指在活体状态下在细胞和分子水平上应用影像学方法对生物过程和时间上的定性和定量分析的一门科学,技术主要包括生物发光(bioluminescence)与荧光(fluorescence)、同位素成像(Isotopes)、X光成像(X-ray)等。其中,生物发光是用荧光素酶(Luciferase)基因标记细胞或DNA,而荧光技术则采用荧光报告基团表达的荧光蛋白(GFP、EGFP、RFP、YFP)、荧光染料等进行标记,然后利用仪器进行检测。同位素成像是利用放射性同位素作为示踪剂,对研究对象进行标记, 并进行活体成像的一种微量分析方法,通过活体成像技术可以观测活体动物体内肿瘤的生长及转移、感染性疾病发展过程、特定基因的表达等生物学过程,其中以生物发光应用较为实用。
不同成像技术的比较
一、活体成像应用范围
二、生物发光技术原理
活体生物发光技术是指在动物体内利用报告基因(如荧光素酶基因)表达所产生的荧光素酶蛋白与底物荧光素在氧、Mg2+存在的条件下消耗ATP发生氧化反应,将部分化学能转化为光能释放,在体外利用敏感的CCD设备形成图像。荧光素酶报告基因质粒可以被插入多种基因的启动子,成为某种基因的报告基因,通过检测报告基因从而实现对目标基因的监测。
图1:生物发光活体成像检测原理
生物荧光其本质为化学荧光,荧光素被荧光素酶氧化的过程中可以释放波长广泛的可见光光子,其波长范围为460-630nm(平均波长为610nm)。在哺乳动物体内,血红蛋白是吸收可见光的主要成分,能吸收蓝绿光波段中的大部分可见光;水和脂质主要吸收红外线,但其均对波长为590-800nm的红光近红外线吸收能力较差,因此波长超过600nm的红光虽然有部分散射消耗但大部分可以穿透哺乳动物组织而被高灵敏CCD检测到。
图2:CCD检测仪器及生物发光成像检测结果
三、生物发光成像应用
1.疾病研究
肿瘤学
荧光素酶基因插入到肿瘤细胞的染色质的随机位点,再将该肿瘤细胞转入动物体内可以建立各种肿瘤模型,用于实时观察体内肿瘤细胞的增殖、生长、转移情况,够让研究人员在近无创条件下直接快速观察研究。其特点是极高的灵敏度使微小的肿瘤病灶(少到几百个细胞)也可以被检测的到,比传统方法的检测灵敏度大大提高,避免屠杀老鼠而造成的组间差异,节省动物成本。
2.药物研究
(1)抗肿瘤药物研究
通过给予肿瘤接种的小鼠不同剂量、不同给药时间、不同给药途径,观察并制定合适的剂型与服药时间。用荧光素酶标记肿瘤细胞, 建立各种可视肿瘤模型,实时评价各种治疗手段的治疗效果,可以动态观察肿瘤细胞治疗后的变化、肿瘤细胞是否死亡、肿瘤体积是否变小,这是生物发光活体成像技术的最重要的应用领域。
(2)药物代谢相关研究
标记与药物代谢有关的基因,研究不同药物对该基因表达的影响,从而间接获知相关药物在体内代谢的情况。在药剂学研究方面,可通过把荧光素酶报告基因质粒直接装在载体中,观察药物载体的靶向脏器与体内分布规律。在药理学方面,可用荧光素酶基因标记目的基因,观察药物作用的通路。
药物的肿瘤靶向性研究:利用645 VivoTag荧光染料标记抗癌药物曲妥珠单抗(Trastuzumab),尾静脉注入携带HER2阳性人卵巢癌SKOV3的SCID小鼠体内,通过荧光成像观测不同时间点药物对肿瘤的靶向情况 (左上图后三列),肿瘤本身已被荧光素酶标记而通过生物发光成像(左上图最左列),右上图为荧光定量分析结果,标明曲妥珠单抗对HER2阳性的人卵巢癌SKOV3具有良好靶向性。
3.细胞标记
免疫细胞研究:标记免疫细胞,观察免疫细胞对肿瘤细胞的识别和杀死功能,评价免疫细胞的免疫特异性、增殖、迁移等功能。
干细胞研究:标记组成性表达的基因,在转基因动物水平,标记干细胞,若将干细胞移植到另外动物体内,可用活体生物发光成像技术示踪干细胞在体内的增殖、分化及迁移的过程。
细胞凋亡:用分子生物学方法在荧光酶的两端连接上抑制发光的蛋白(如激素酶),但在其连接处加上caspase,细胞发生凋亡时,表达caspase,切开抑制荧光酶发光的蛋白,使荧光素酶开始发光,观察细胞凋亡情况。
4.基因表达与基因功能的研究
将荧光素酶基因插入到目的基因启动子的下游,并稳定整合于实验动物染色体中,形成转基因动物模型。该方式可实现目的基因与荧光素酶的表达平行,从而可直接观察目的基因的表达模式,包括数量、时间、部位及影响其表达和功能的因素。
p53基因的抑癌作用:上图a,实验设计示意图;上图b,关闭-开启p53的表达对肿瘤发展的影响;上图c,关闭-开启-再关闭p53的表达对肿瘤发展的影响。
5.蛋白质相互作用
将分开时都不单独发光的荧光酶的C端和N端分别连接在两个不同的蛋白质上,若是这两个蛋白质之间有相互作用,荧光酶的C端和N端就会被连接到一起,激活荧光素酶的转录表达,在有底物存在时出现生物发光。在活体条件下研究药物对蛋白质相互作用的影响,可以观察到在体外实验中无法模拟的活体环境对蛋白质相互作用的影响。
6.其他
生物发光的其他应用如RNAi、蛋白质核运输等。在荧光素酶基因的一端接要研究的蛋白质的基因,另一端接肯定在细胞核内表达的蛋白的基因,当核外的蛋白运输到核内时,就会导致荧光素酶N端、C端靠近,恢复发光。
原文出处:奔跑的蜗牛 佰欧晶生物
Copyright 2019.吉林大学白求恩第一医院公共实验平台 版权所有 网站建设:中企动力 长春
吉ICP备11003057号